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Abstract. We study the effects of heavy Higgs bosons on the tt production process at photon linear colliders.
The interference patterns between the resonant Higgs production amplitudes and the continuum QED
amplitudes are examined. The patterns tell us not only the CP nature of the Higgs bosons but also the phase
of the γγ–Higgs vertex which gives new information about the Higgs couplings to new charged particles. We
point out that it is necessary to use circularly polarized photon beams to produce efficiently heavy Higgs
bosons whose masses exceed the electron beam energy, and show that the above interference patterns of the
production amplitudes can be studied by observing t and t decay angular distributions. Analytic expressions
for the helicity amplitudes for the sequential process γγ → tt → (bW+)(bW −) → (bf1f2)(bf3f4) are
presented in terms of the generic γγ → tt production amplitudes.

1 Introduction

The scalar sector of the standard model (SM) consists
of one SU(2)w doublet. After the electroweak symmetry
breaking (EWSB), a neutral CP -even Higgs boson remains
as a physical state. Although the SM is consistent with the
current experimental data, new physics will be indispens-
able if we consider the hierarchy between the electroweak
scale and the Planck scale, the failure of the gauge coupling
unification etc. as serious problems. It is natural that new
physics modify the mechanism of the EWSB. Such a mod-
ification may lead to the appearance of Higgs bosons with
various CP properties. In the case that an extra doublet
extends the scalar sector of the SM, two extra neutral and
two charged Higgs bosons should be observed. If CP is a
good symmetry of the scalar sector, one additional neu-
tral boson is CP -even and the other is CP -odd. Therefore,
probing the CP property as well as the masses, the de-
cay widths and the couplings of all the Higgs bosons is
necessary for exploring the Higgs sector.

One of the colliders which can play an important role
in studying the Higgs sector is a photon linear collider
(PLC), an option of e+e− linear colliders [1–3]. The en-
ergy of the colliding photons, which are obtained by the
backward Compton scattering of laser light on high-energy
electrons, reaches about 80% of the energy of the original
electron beam [4]. Since neutral Higgs bosons are produced
as s-channel resonances via loops of charged massive par-
ticles, we can detect the Higgs bosons whose masses are
less than about 80% of the collision energy of a parent
e+e− collider. Thus, a PLC has the great advantage of de-

tecting heavy neutral Higgs bosons whose masses exceed
the reach of the LHC and an e+e− LC especially for those
of the minimal supersymmetric SM (MSSM) [5]. For light
Higgs bosons, it is well known that the γγ decay widths
of the Higgs bosons can be accurately measured [6]. This
measurement is important because the contribution from
heavy charged particles which couple to the Higgs bosons
does not decouple from the vertex if their masses originate
from the EWSB. As for the CP nature of Higgs bosons,
CP -even and CP -odd Higgs bosons can be clearly dis-
tinguished by utilizing the linear polarization of colliding
photons [7]. This powerful technique, however, is effective
to probe the CP nature of relatively light Higgs bosons
only, because the linear polarization transfer of the Comp-
ton back-scattered laser light decreases significantly when
the photon energy is more than half the electron beam
energy [4, 8]. For the heavier Higgs bosons whose masses
exceed the electron beam energy, the tt production process
with circularly polarized photons is useful to study their
CP properties [9–11].

In this paper, we revisit the study of the CP nature
of neutral Higgs bosons through the tt production process
at a PLC. Such a study has been performed in [9–11]. It
has been shown in Sect. 4.4 of [9] that, if we observe a
sizable interference between the Higgs resonant and QED
continuum amplitudes for the two helicity combinations
of the top pairs produced by circularly polarized colliding
photons, we can determine the CP parity of the Higgs
bosons. In [10], the observables which are useful for com-
plete determination of the γγ-Higgs and tt-Higgs couplings
have been presented, in the presence of CP non-conserving
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interactions. The accuracy of the determination of those
couplings has been studied in [11], by using the combined
asymmetries involving the circular polarization of colliding
photons and the charge of charged leptons in top decays
with a cut off on the lepton angle.

In this paper, we extend the study of [9], and study the
interference patterns of the resonant and the continuum
amplitudes in more detail for the γγ → tt process by using
the circularly polarized colliding photons. We find that not
only the squares of the helicity amplitudes but also the
real and imaginary parts of the interference between the
two helicity amplitudes can be measured by studying the
angular correlations of t and t decay products. They are
useful for deriving information on the CP nature of Higgs
bosons. It will also be shown that these interference effects
allow us to observe the complex phase of the γγ-Higgs
vertices, as [12] has shown in WW and ZZ production
processes.

This paper is organized as follows. In Sect. 2 helicity
amplitudes for the process γγ → tt are given. In Sect. 3 ob-
servables which are sensitive to the CP parity of the Higgs
bosons as well as the complex phase of the γγ–Higgs ver-
tex are discussed. Numerical estimates of the observables
which are introduced in Sect. 3 are performed in Sect. 4. We
give our conclusions in the last section. Analytic expres-
sions for the helicity amplitudes for the sequential process
γγ → tt → (bW+)(bW−) → (bf1f2)(bf3f4) are presented
in Appendix A.

2 Helicity amplitudes for the process γγ → tt

When the γγ collision energy reaches around the mass
of a spinless boson φ (φ = H or A where H and A are
the CP -even and CP -odd Higgs bosons respectively), the
process

γ(k1, λ1) + γ(k2, λ2) → t(p, σ) + t(p, σ) (2.1)

receives leading contributions from the diagrams in which
the spinless boson is exchanged in the s-channel and the
top quark is exchanged in the t- and u-channels. The four-
momenta and the helicities of the participating particles in
the colliding γγ center-of-mass frame are given in parenthe-
ses. We adopt the notation [13] where the photon (fermion)
helicities are denoted by the signs in units of � (�/2)1. The
helicity amplitudes of the process can be expressed as

Mσσ
λ1λ2

= [Mφ]σσ
λ1λ2

+ [Mt]
σσ
λ1λ2

, (2.2)

where the first term, Mφ, stands for the s-channel φ-
exchange amplitudes and the latter term Mt stands for
the t- and u-channel top-quark exchange amplitudes. The
resonant helicity amplitudes are calculated by using the
lowest-dimensional effective Lagrangian of the form

Lφγγ =
1

mφ

(
bH
γ AµνAµν + bA

γ ÃµνAµν
)

φ, (2.3)

1 For fermion helicities we often use the notation L and R
instead of − and +

Lφtt = t
(
dH

t + idA
t γ5

)
tφ, (2.4)

where Aµν = ∂µAν − ∂νAµ and Ãµν = 1
2εµνρσAρσ (where

ε0123 = 1) are the photon field strength tensor and its
dual tensor, respectively. The resonant amplitudes are then
expressed as products of the γγφ vertex function Aλ1λ2

φ ,
the Higgs propagator factor Bφ and the decay vertex Cσσ

φ ,

[Mφ]σσ
λ1λ2

= Aλ1λ2
φ BφCσσ

φ , (2.5)

where

Aλ1λ2
φ =

(
bH
γ + iλ1b

A
γ

) ŝ

mφ
δλ1λ2 , (2.6)

Bφ =
1

m2
φ − ŝ − imφΓφ

, (2.7)

Cσσ
φ =

(
β σdH

t − idA
t

)√
ŝ δσσ. (2.8)

In the CP -conserving limit, the H- and A-exchange am-
plitudes are [9]

[MH ]σσ
λ1λ2

= σ β bH
γ dH

t

ŝ

m2
H − ŝ − imHΓH

√
ŝ

mH

δλ1,λ2δσ,σ,

(2.9)

[MA]σσ
λ1λ2

= λ1 bA
γ dA

t

ŝ

m2
A − ŝ − imAΓA

√
ŝ

mA

δλ1,λ2δσ,σ,

(2.10)

where β is the velocity of the top quarks and ŝ is the
total energy-squared in the rest frame of γγ collisions. The
masses and the total decay widths of the Higgs bosons are
denoted by mφ and Γφ.

In the following, we sometimes use the predictions of
the MSSM as examples. The effective couplings are ex-
pressed in the MSSM as

dH
t = − gmt

2mW

sin α

sin β
, (2.11)

dA
t =

gmt

2mW
cot β

for the ttH and ttA couplings, where g is the SU(2) gauge
coupling, tanβ = 〈vu〉/〈vd〉 is the ratio of the two Higgs
vacuum expectation values, and α is the mixing angle be-
tween the neutral real components of the two Higgs dou-
blets and the two CP -even Higgs bosons. The γγH and
γγA couplings are induced on the one loop level:

bH
γ (ŝ) =

αg

8π
mH

mW

∑
i

Ii
H

(
ŝ

m2
i

)
, (2.12)

bA
γ (ŝ) = −αg

8π
mA

mW

∑
i

Ii
A

(
ŝ

m2
i

)
.
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Table 1. The tree-level helicity amplitudes of γγ → tt, [Mt]σσ
λ1λ2

, in (2.13). The
common factor 8παQ2

t /(1 − β2 cos2 Θ) is omitted in the table. The two photon
helicities λ1λ2 are given in the first column, and the tt helicities σσ are denoted
by RR, LL, RL, LR for (σσ) = (++), (−−), (+−), (−+), respectively, in the
first row

RR LL RL LR
++ (1 + β)/γ (1 − β)/γ 0 0
−− −(1 − β)/γ −(1 + β)/γ 0 0
+− −β/γ sin2 Θ β/γ sin2 Θ −β sin Θ(1 + cos Θ) β sin Θ(1 − cos Θ)
−+ −β/γ sin2 Θ β/γ sin2 Θ β sin Θ(1 − cos Θ) −β sin Θ(1 + cos Θ)

The dimensionless loop functions Ii
H and Ii

A for all the
MSSM diagrams (labeled by the index i, where the masses
of particles in the loops are expressed by mi) are found
e.g. in [14]. As long as the SUSY particles are heavier than
the top quark, the top-quark contribution dominates over
all the other contributions. The effective couplings bH

γ and
bA
γ are real when all the particles in the loops are heavy

and become complex above the thresholds.
The irreducible background to the resonant φ produc-

tion process is the non-resonant top-quark exchange pro-
cesses, whose amplitudes are expressed in the tree level of
QED by [9]

[Mt]
σσ
λ1λ2

=
8παQ2

t

1 − β2 cos2 Θ
(2.13)

× {
(βσ + λ1)/γ δλ1,λ2δσ,σ − β/γ σ sin2 Θ δλ1,−λ2δσ,σ

−β(σλ1 + cos Θ) sin Θ δλ1,−λ2δσ,−σ

}
.

Here 1/γ =
√

1 − β2 = 2mt/
√

ŝ and Θ is the polar angle
of the top-quark momentum in the colliding γγ CM frame.
In Table 1, the amplitudes in units of the common factor
8παQ2

t /(1 − β2 cos2 Θ) are summarized. In this table, the
photon helicities λ1λ2 are given in the first column, and
the tt helicities σσ are denoted by RR, LL, RL, LR for
(σσ) = (++), (−−), (+−), (−+), respectively, in the
first row. It should be noted that the four amplitudes in
the left top column of Table 1, those for λ1 = λ2 and
σ = σ, interfere with the resonant amplitudes of (2.5).
Furthermore, at high energies (β → 1, γ � 1) all the
σ = σ amplitudes are suppressed by 1/γ, among which
the amplitudes for σ = σ = −λ = −λ are suppressed
by 1/γ3. These properties as well as the relative signs of
the top-quark exchange amplitudes will be found useful in
probing the CP nature of the Higgs bosons in the following
sections.

3 Determining the CP parity
of the Higgs bosons

3.1 Overview

The helicity dependence of the amplitudes discussed in
the previous section is summarized in Table 2. We note

Table 2. The helicity dependence of the amplitudes of
γ(λ)γ(λ) → t(σ)t̄(σ), [M]σσ

λλ. We denote [M]RR
++ by M for Mt,

MH and MA, which denote the top-, H- and A-exchange am-
plitudes, respectively. The two photon helicities λλ are given
in the first column, and the tt helicities σσ are denoted by RR,
LL for (σσ) = (++), (−−), respectively, in the first row

RR LL
Mt

1−β
1+β

Mt

++ MH − MH

MA MA

− 1−β
1+β

Mt − Mt

−− MH − MH

− MA − MA

here that the individual (H-exchange, A-exchange, and
t-exchange) amplitudes for the helicities λ = λ = − and
λ = λ = −σ = −σ are obtained from the λ = λ = σ = σ =
+ amplitudes [MH,A,t]

++
++ by multiplying the appropri-

ate sign factor representing the CP transformation prop-
erty and the kinematical factor for the top-quark exchange
amplitudes. Here [MH,A,t]

++
++ are denoted by MH,A,t for

simplicity. When the polarization of the colliding beams
is fixed, e.g. as λ = λ = +, the sign of the H production
amplitude changes when the helicities of final top pairs are
flipped. On the other hand, the sign of the A production
amplitude does not depend on the helicities of the final top
pairs. The sign of the top-quark exchange amplitudes does
not depend on the tt helicities, just like the A-exchange
amplitudes, but the amplitude is reduced by a factor of
(1−β)/(1+β) = 1/[γ2(1+β)2] when the top-quark helic-
ity is opposite to the photon helicity, λ1 = λ2 = −σ = −σ.
Therefore, the top-quark helicity dependence of the inter-
ference pattern between the resonant amplitudes and the
top-quark exchange amplitudes can be used to determine
the CP parity of the Higgs resonance [9]. It should further
be noted that within the given helicity amplitude the in-
terference pattern below and above the resonance is also
a good probe of the CP parity. In our phase connection,
Mt is positive at all ŝ, whereas the φ-exchange amplitude
Mφ is positive at low ŝ where the absorptive part of the
φγγ vertex can be neglected for the dominant top-quark
loop contribution. We should hence expect constructive
interference below the resonance when λ1 = λ2 = σ = σ.
The above statements are valid for both H and A, or their
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arbitrary mixture when CP is violated. The interference
pattern for the λ1 = λ2 = −σ = −σ amplitude is expected
to reverse for H, whereas it remains the same for A. Both
signs are possible when the resonance φ does not have a
definite CP parity.

Based on the above observation, we study carefully
the interference patterns between the helicity amplitudes,
that receive contribution from the s-channel spin-0 res-
onance production. In general, four types of observables
can be studied in the process γγ → tt where the initial
photon polarization can be controlled by the backward
Compton scattering of the laser light and the tt polar-
ization are measured through the angular distributions of
the correlated cascade decays, t → bW+ → bf1f2 and
t → bW− → bf3f4. All the observables which are sensi-
tive to the spin-0 resonance contributions are listed below:∣∣MRR

λλ

∣∣2 ,
∣∣MLL

λλ

∣∣2 for λ = +, −; (3.1)

Re, Im
[
MRR

λλ

(MLL
λλ

)∗]
for λ = +, −; (3.2)

Re, Im
[
Mσσ

++
(Mσσ

−−
)∗] for σ = R, L; (3.3)

Re, Im
[
Mσσ

++
(M−σ,−σ

−−
)∗]

for σ = R, L. (3.4)

The observables (3.1) have been studied in [9] and they
are found to be useful in distinguishing A from H. The
observables (3.3) have been studied in [10] and are found
to be effective in probing the CP nature of the neutral
Higgs sector, including the case of CP -violation. Unfor-
tunately, the observables (3.3) require linear polarization
of the colliding photon beams, whose magnitude is small
for z ≡ √

ŝ/
√

s � 0.5 where
√

s is the CM energy of a
parent e−e− collider [4, 8]. In this article, we concentrate
on the observables (3.1) and (3.2), which can take advan-
tage of the high γγ luminosity at large z with high level of
monochromaticity, that are obtained from the backward
Compton scattering of circularly polarized laser lights on
longitudinally polarized electron beams. The CP -violating
cases will be studied elsewhere [15]. To our knowledge, the
observables of the type (3.4), whose observation requires
both the linearly polarized photons and the angular cor-
relations of t and t decays, have not been studied.

3.2 Observables

Because the top-quark polarizations are measured through
its decay angular distribution [16,17], we study the cascade
process

γ(k1, λ1) + γ(k2, λ2) → t(p, σ) + t(p, σ) (3.5)

→ b(pb, L) W+(pW , Λ) + b(pb, R) W−(pW , Λ)

(3.6)

→ b(pb, L) f1(p1, L) f2(p2, R)

+b(pb, R) f3(p3, L) f4(p4, R), (3.7)

where we assume the SM amplitudes for the decays, and
neglect the masses of all final fermions including b and b.
The helicity amplitudes for the full process (3.7), Mλ1λ2 ,
are given in Appendix A. The differential cross section for
arbitrary initial photon helicities

dσ̂λ1λ2

d cos Θ d cos θ dφ d cos θ dφ d cos θ∗ dφ∗ d cos θ
∗

dφ
∗

=
3β

32πŝ

∣∣∣Mλ1λ2(Θ; θ, φ; θ, φ; θ∗, φ∗; θ
∗
, φ

∗
)
∣∣∣2 × B12B34

(3.8)

is readily obtained in the zero-width limit of the top quarks
and the W bosons. Here B12 is the branching fraction of
W+ → f1f2 decays, and B34 is the one of W− → f3f4,
ŝ = (k1 + k2)2 is the total-energy-squared in the colliding
γγ CM system, Θ is the polar angle of the top-quark mo-
mentum in this frame measured from the direction of the
photon beam with the momentum k1, θ and φ (θ and φ)
are the polar and azimuthal angles, respectively, of the W+

(W−) momentum in the t (t) rest frame. The polar angles
(θ and θ) are measured from the top-quark momentum
direction in the γγ CM frame and the azimuthal angles (φ
and φ) are measured from the γγ → tt scattering plane.
Here we choose the common polar axis and the φ = φ = 0
plane to describe the t → bW+ and t → bW− decays, so
that our coordinate frame for t → bW− decays is obtained
from the frame used for t → bW+ decays by a single boost
along the top-quark momentum direction. Finally, θ∗ and
φ∗ (θ

∗
and φ

∗
) are the polar and azimuthal angles, respec-

tively, of the f2 (f3) momentum in the W+ (W−) rest
frame. The polar angle θ∗ (θ

∗
) is measured from the W+

(W−) momentum direction in the t (t) rest frame, and the
azimuthal angle φ∗ (φ

∗
) is measured from the W+b (W−b)

decay plane in the γγ collision CM frame. The origins of
the azimuthal angles are chosen such that the y-axis for
φ = φ = π

2 is along the k1 × p direction in the γγ CM
frame, the one for φ∗ = π

2 (φ
∗

= π
2 ) is along the p × pW+

(p × pW −) direction also in the γγ CM frame.
If we assume that the top-quark decays are essentially

described by the SM amplitudes as above, it is straight-
forward to extract all the four observables (3.1) and (3.2),
for a given initial photon polarization (λ1 = λ2 = + or
−), by studying the t and t decay angular distributions.
An optimal accuracy of such measurements can readily
be estimated by using the exclusive distributions [18] for
a given range of the scattering angle Θ. Such measure-
ments should be especially effective near the tt threshold
where the Θ dependence of the background amplitude is
moderate. In this article, we present a primitive version
of such an analysis where we assume that the exclusive
distributions of the γγ → tt → bW+bW− process (3.6)
are measured for transversely and longitudinally polar-
ized W ’s (WT and WL, respectively) separately. We as-
sume that the W+ (W−) helicity is measured in the t (t)
rest frame. Such distributions are in principle measurable
when the W pair decays hadronically or semi-leptonically.
When both W ’s decay leptonically, the presence of two
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energetic neutrinos in the final state makes it impossible
to reconstruct the W momenta uniquely. It should further
be noted that WT and WL can be distinguished experi-
mentally even when the W decays hadronically, though
less efficiently than the leptonic decay case.

The differential cross sections for polarized W ’s are
now expressed compactly as follows:

dσ̂ΛΛ
λ1λ2

d cos Θ d cos θ dφ d cos θ dφ

=
3β

32πŝ

∣∣∣MΛΛ
λ1λ2

(Θ; θ, φ, θ, φ)
∣∣∣2 . (3.9)

Explicit forms of the helicity amplitude MΛΛ
λ1λ2

appear in
Appendix B. Here, we consider the case of λ1 = λ2 = λ,
because a high luminosity and high degree of polarization
for energetic two photon pairs can be achieved at a PLC.
The four relevant squared matrix elements for λ1 = λ2 = λ
are

|MLL
λλ |2 =

B2
L

16π2

{
|MRR

λλ |2(1 + cos θ)(1 + cos θ) (3.10)

+ |MLL
λλ |2(1 − cos θ)(1 − cos θ)

+ 2 Re
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ cos(φ − φ)

− 2 Im
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ sin(φ − φ)

}
,

|MLT
λλ |2 =

BLBT

16π2

{
|MRR

λλ |2(1 + cos θ)(1 − cos θ) (3.11)

+ |MLL
λλ |2(1 − cos θ)(1 + cos θ)

− 2 Re
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ cos(φ − φ)

+ 2 Im
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ sin(φ − φ)

}
,

|MTL
λλ |2 =

BLBT

16π2

{
|MRR

λλ |2(1 − cos θ)(1 + cos θ) (3.12)

+ |MLL
λλ |2(1 + cos θ)(1 − cos θ)

− 2 Re
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ cos(φ − φ)

+ 2 Im
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ sin(φ − φ)

}
,

|MTT
λλ |2 =

B2
T

16π2

{
|MRR

λλ |2(1 − cos θ)(1 − cos θ) (3.13)

+ |MLL
λλ |2(1 + cos θ)(1 + cos θ)

+ 2 Re
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ cos(φ − φ)

− 2 Im
[
MRR

λλ · (MLL
λλ

)∗]
sin θ sin θ sin(φ − φ)

}
,

where BL = m2
t /(m2

t + 2m2
W ) and BT = 2m2

W /(m2
t +

2m2
W ) are the branching ratios of the decays t → bW+

L
(t → bW−

L ) and t → bW+
T (t → bW−

T ), respectively. It is

clear that |MRR
λλ |2 and |MLL

λλ |2 are obtained by integrating
out the φ − φ azimuthal angle distributions, and they can
be distinguished by using the W+ and W− polar angle (θ
and θ) distributions. Since it is necessary to distinguish θ
from θ (W+ from W−), semi-leptonic decay modes should
be used for the discrimination. Re[MRR

λ1λ2
· (MLL

λ1λ2

)∗] and
Im[MRR

λ1λ2
· (MLL

λ1λ2

)∗] are obtained simply by projecting
out the cos(φ − φ) and sin(φ − φ) distributions. Both φ
and φ are observable when the W+W− pair decays semi-
leptonically. Because the above four distributions can be
measured independently, consistency among the four mea-
surements can be checked.

We note here that the cross section for λ1 = λ2 =
λ without observing the W polarization can be written
compactly as follows:

dσ̂λλ

d cos Θ d cos θ d cos θ dφ dφ

=
3β

32πŝ

1
16π2 × {|MRR

λλ |2 [(B2
L + B2

T)(1 + cos θ cos θ)

+ 2BLBT(1 − cos θ cos θ) + (B2
L − B2

T)(cos θ + cos θ)
]

+ |MLL
λλ |2 [(B2

L + B2
T)(1 + cos θ cos θ)

+ 2BLBT(1 − cos θ cos θ) − (B2
L − B2

T)(cos θ + cos θ)
]

+ 2 Re
[MRR

λλ (MLL
λλ)∗]

× [(BL − BT)2 sin θ sin θ cos(φ − φ)
]

+ 2 Im
[MRR

λλ (MLL
λλ)∗]

× [−(BL − BT)2 sin θ sin θ sin(φ − φ)
]}

. (3.14)

Because BL and BT have different numerical values, BL �
0.7 and BT � 0.3, we can obtain the four observables
|MRR

λλ |2, |MLL
λλ |2, Re[MRR

λλ (MLL
λλ)∗] and Im[MRR

λλ (MLL
λλ)∗]

even without observing the W polarization. In the follow-
ing discussion, we adopt the simple expression (3.14) in
order to avoid repeating similar equations four times. It
should be understood that the measurements can be im-
proved significantly by using the W polarization informa-
tion, as shown in (3.10) to (3.13).

4 Numerical estimates

4.1 Convoluted cross sections
with energy distribution of photon beams

The Compton back-scattered photons have a broad energy
distribution with the maximal value Emax

γ = x
x+1Ee with

x ≡ 4EeωL/m2
e, in the zero angle limit of the Compton

scattering. Ee and ωL are the electron and laser photon
energy. The circularly polarized laser photons and longi-
tudinally polarized electrons help the broad distribution
peak near the high-energy end-point where the colliding
photons are highly polarized.
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Fig. 1. The γγ luminosity functions normalized by L0.8, the luminosity integrated over the region z ≥ 0.8zm where z =√
sγγ/

√
see and zm = x/(x +1) is the maximum energy fraction. The distributions of different γγ helicity combinations, (++),

(−−), (+−) and (−+), are shown separately for Pl = −1.0, Pe = 0.9 and x = 4.8

Figure 1 shows the γγ collision energy distribution
which is calculated by the tree-level formula of the back-
ward Compton scattering [4] for x = 4.8 assuming com-
plete polarization for laser photons (Pl = −1.0) and 90%
polarization for electrons (Pe = 0.9). The distributions
are shown for each combination of γγ helicities. The hor-
izontal axis indicates the γγ collision energy (

√
ŝ) nor-

malized by the ee CM energy (
√

s), that is, z =
√

ŝ/
√

s.
The large z region where the energy distribution is peaked
and dominated by the ++ combination (λ1 = λ2 = +) is
most useful for the study of Jz = 0 mode in the γγ col-
lision. It is expected that the γγ luminosity in the region
z ≥ 0.8zm = 0.8 x

x+1 will account for about 10% of the geo-
metric luminosity of electron–electron collisions, Lgeom

ee [4],

L0.8 ≡
∑

λ1, λ2

∫ zm

0.8zm

dz
dLλ1λ2

dz
≈ 0.1Lgeom

ee . (4.1)

In the lower energy region, z � 0.8zm, both the spectrum
and the polarization receive significant non-linear correc-
tions so that the Compton scattering becomes a poor ap-
proximation. We therefore normalized the γγ luminosity
distributions by L0.8 in Fig. 1. All our convoluted cross sec-
tions are calculated for the γγ luminosity distributions nor-
malized by L0.8. The expected number of events is hence
obtained by multiplying the convoluted cross sections by
L0.8 ≈ 0.1Lgeom

ee . Though our luminosity functions based
on Compton scattering are not reliable at z � 0.8zm or
z � 0.66 for x = 4.8, in this report we consider tt produc-

tion at a
√

see = 500 GeV collider, and hence our study is
limited to the region z ≥ 2mt/

√
s ≈ 0.7.

Because of the above broad γγ energy distributions,
we cannot observe the γγ → tt production cross section
at a given γγ energy,

√
sγγ ≡ √

ŝ. Instead we should use
the invariant mass of the final tt pair system, mtt, as a
measure of the colliding γγ energy. Although mtt can in
principle measured event by event when a produced tt pair
decays hadronically or semi-leptonically, we should expect
uncertainties due to finite resolutions and non-Hermiticity
of the detector. We introduce the smearing function

G(
√

ŝ − mtt, ∆) =
1√
2π∆

exp

−1
2

(√
ŝ − mtt

∆

)2
 (4.2)

between the true mtt =
√

ŝ and the mtt as written. The
observable cross sections can then be approximated as

dσ

dmtt

≡
∫ zm

√
s

0
d
√

ŝ (4.3)

×
∑

λ1, λ2

1
L0.8

dLλ1λ2

d
√

ŝ
σ̂λ1λ2(

√
ŝ) G(

√
ŝ − mtt, ∆).

When we set ∆ = 0 GeV, the mtt distributions reproduce
the

√
sγγ distributions.

In (4.3), the γγ luminosity integrated over z ≥ 0.8zm is
denoted by L0.8 and the luminosity distribution for each γγ
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helicity combination is expressed by dLλ1λ2/d
√

ŝ. Thus,
the expected number of events with mmin ≤ mtt ≤ mmax
is estimated by the formula

N(mmin ≤ mtt ≤ mmax) = 0.1Lgeom
ee ×

∫ mmax

mmin

dmtt

dσ

dmtt

.

(4.4)
It is notable that the geometric ee luminosity Lgeom

ee can be
larger than the nominal e+e− luminosity Lee. According
to the TESLA design [2],

Lee = 3 × 1034 cm−2s−1,

Lgeom
ee = 12 × 1034 cm−2s−1 (4.5)

at
√

s = 500 GeV have been reported.

4.2 Results

We consider the decay angular distribution of tt pairs pro-
duced via γγ collisions, and express the convoluted cross
section in terms of four observables, Σ1 to Σ4, which con-
tain all the information about the γγ → tt helicity ampli-
tudes. When we do not study W+ and W− decay angular
distributions, the differential cross sections is expressed as

dσ

dmtt d cos θ dφ d cos θ dφ

=
∫

d
√

ŝ
∑

λ1, λ2

(
1

L0.8

dLλ1λ2

d
√

ŝ

)(
dσ̂λ1λ2(

√
ŝ)

d cos θ dφ d cos θ dφ

)

×G(
√

ŝ − mtt, ∆)

≡ {
Σ1(mtt)

[
(B2

L + B2
T)(1 + cos θ cos θ)

+ 2BLBT(1 − cos θ cos θ) + (B2
L − B2

T)(cos θ + cos θ)
]

+ Σ2(mtt)
[
(B2

L + B2
T)(1 + cos θ cos θ)

+ 2BLBT(1 − cos θ cos θ) − (B2
L − B2

T)(cos θ + cos θ)
]

+ Σ3(mtt)
[
(BL − BT)2 sin θ sin θ cos(φ − φ)

]
+ Σ4(mtt)

[−(BL − BT)2 sin θ sin θ sin(φ − φ)
]}

/16π2

+ [(σ = −σ) contributions] . (4.6)

Here the small non-resonant contributions from σ = −σ
(RL or LR) events are not shown explicitly. The four co-
efficients of the distinct decay angular distributions are

Σi(mtt) =
∫

d
√

ŝ
∑

λ1, λ2

(
1

L0.8

dLλ1λ2

d
√

ŝ

)
(4.7)

×
(

3β

32πŝ

∫
Si

λ1λ2
(Θ,

√
ŝ)d cos Θ

)
G(

√
ŝ − mtt, ∆),

for i = 1–4,

where the functions Si
λ1λ2

contain all the information about
the γγ → tt helicity amplitudes:

S1
λ1λ2

=
∣∣MRR

λ1λ2

∣∣2 ,

S2
λ1λ2

=
∣∣MLL

λ1λ2

∣∣2 ,

S3
λ1λ2

= 2 Re
[
MRR

λ1λ2

(MLL
λ1λ2

)∗]
,

S4
λ1λ2

= 2 Im
[
MRR

λ1λ2

(MLL
λ1λ2

)∗]
. (4.8)

A few remarks about (4.6) are in order. The compact ex-
pression for the differential cross section in terms of the
observable mtt, the t → bW+ decay angles θ and φ, and
the t → bW− decay angles θ and φ are obtained by inte-
grating out the γγ → tt scattering angle Θ, the W+ decay
angles θ∗ and φ∗, and the W− decay angles θ∗ and φ∗;
see (3.8). We do not lose much information by the integra-
tion over cos Θ because the resonant J = 0 amplitudes do
not depend on cosΘ and because the cos Θ dependences
of the interfering QED amplitudes are mild near the tt
threshold; β = 0.48 at

√
sγγ = 400 GeV. As explained in

Sect. 3.2, a careful study of W+ and W− decay angular
distributions should give us independent measurements of
the observables Σ1 to Σ4, and should therefore reduce the
errors.

The four observables Σ1 to Σ4 of (4.6) are shown in
Fig. 2 for ∆ = 0 GeV (no smearing by detector resolu-
tion), Fig. 3 for ∆ = 3 GeV and in Fig. 4 for ∆ = 6 GeV.
The predictions of the A and H productions are shown
by thick solid and thick dashed curves, respectively. The
QED predictions are shown by the thin solid lines. The
quantity Σ1 + Σ2 is simply the total tt production cross
section, smeared by the resolution factor of ∆. We show
Σ2 instead of Σ1 because the A and H production ampli-
tudes interfere with the QED amplitudes differently in the
λ1 = λ2 = + to σ = σ = L amplitudes.

When we draw the predictions of A and H productions
in Figs. 2, 3 and 4, we adopt a MSSM prediction for the
A production, while the H production curves are drawn
by using the amplitudes MH which are obtained from the
MA for the same mass and width and the same magnitudes
for the partial widths to γγ and tt. The MSSM parameters
used for calculating MA are as follows: mA = 400 GeV,
tanβ = 3, mf̃ = 1 TeV, M2 = 500 GeV, µ = −500 GeV.
We find mA = 400 GeV, ΓA = 1.75 GeV, Br(A → γγ) =
1.53× 10−5 and Br(A → tt) = 0.946 for the above param-
eters [19]. The H production amplitudes MH are thus ob-
tained from MA by keeping the mass, width and partial
widths common in order to show clearly the sensitivity
of the four observables to the CP property of the pro-
duced spinless boson. For the collider parameters, we use
Ee = 250 GeV, Pl = −1.0, Pe = 0.9 and x = 4.8, where
the colliding photons are highly polarized – they are +
around

√
ŝ = 400 GeV; see Fig. 1. Since the effects from

the (λ1λ2) = (+−), (−+) and (−−) combinations on the
observables are less than 1% around the peak region, they
are neglected here. In this limit, the quantities S1−4 in
(4.8) can be expressed by Mt and Mφ as

S1
++ = |Mt|2 + |Mφ|2 + 2Mt Re [Mφ] , (4.9)
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Fig. 2. The observables Σ1 to Σ4 with no smearing by detector
resolution. The thick solid (dashed) curves show the predictions
for the A (H) production. The thin solid curves show the QED
predictions with no Higgs production

S2
++ =

(
1 − β

1 + β

)2

|Mt|2 + |Mφ|2

± 2
1 − β

1 + β
Mt Re [Mφ] , (4.10)

S3
++ = 2

1 − β

1 + β
|Mt|2 ± 2 |Mφ|2

+ 2
(

1 − β

1 + β
± 1

)
Mt Re [Mφ] , (4.11)

S4
++ = 2

(
1 − β

1 + β
∓ 1

)
Mt Im [Mφ] , (4.12)

where the upper and lower signs are adopted for A and H,
respectively.

Let us now examine carefully the results shown in
Figs. 2 to 4. For the total production cross section Σ1+Σ2,
it can be clearly observed in Fig. 2 that the A production
amplitudes receive stronger constructive (destructive) in-
terference below (above) the resonance peak than the H
production amplitudes. A sharp dip above the resonance
peak for the A production line shape may be considered as
a signal of a CP -odd resonance production. However, the
difference between the A and H line shapes diminishes by
smearing. A hint of strong destructive interference survives
in Fig. 3 for the smearing with ∆ = 3 GeV, but the differ-
ence essentially disappears in Fig. 4 for ∆ = 6 GeV. The
two thick curves for Σ1 + Σ2 in Fig. 4 can only tell us of a
broad enhancement over the QED prediction, which may
be fitted well by both A and H production assumptions
with slightly different mass and width values.

The quantity Σ2 shows not only a large contribution
of the Higgs production but also the interference effects
which have an opposite contribution for the A and H pro-
duction. The magnitudes of the effects are small because

340 360 380 400 420
0

5

10

15

20

340 360 380 400 420
0

10

20

30

340 360 380 400 420
−10

−5

0

5

10

15

20

340 360 380 400 420
0

2

4

6

8

mtt [GeV]

Σ1+Σ2 Σ2

Σ3 Σ4

[fb
/G

eV
]

Fig. 3. The observables Σ1 to Σ4 with the tt invariant mass
measurement resolution factor ∆ = 3 GeV. The thick solid
(dashed) curves show the predictions for the A (H) production.
The thin solid curves show the QED predictions with no Higgs
production

the QED amplitude which interferes with the Higgs pro-
duction amplitudes is suppressed by the factor of 1−β

1+β ; see
Table 2. Here the distinctive signature of the negative in-
terference below the resonance for the H production may
survive even for the resolution of ∆ = 6 GeV in Fig. 4.

The interference effects we observe in the Σ3 is larger
for A than for H due to the factor of 1−β

1+β ± 1 in (4.11). A
sharp dip for the A production line shape and a small ex-
cess for the H production line shape above the resonance
peaks are the effects. The destructive interference effect
for A may survive even in Fig. 4 for ∆ = 6 GeV, whereas
the small constructive interference effect for H almost dis-
appears in Fig. 4. It is notable that the effects of the Higgs
production has opposite signs for A and H in (4.11). This
oppositeness causes the A production to enhance Σ3 above
the QED prediction near the peak of the total cross sec-
tion Σ1 + Σ2, whereas the H production predicts smaller
Σ3 than the QED prediction around the peak of the cross
section. This feature seems to persist even with faint tt
mass resolution, in Fig. 3 for ∆ = 3 GeV and Fig. 4 for
∆ = 6 GeV.

As for Σ4, the pure interference effects can be observed.
The QED amplitudes predict Σ4=0 because we adopt the
tree-level amplitudes in our analysis2. The A production
predicts negative and the H production predicts positive
effects for Σ4 around the production peak. The difference
in the magnitudes comes from the factor of 1−β

1+β ∓ 1 in
(4.12). These characteristics appear even considering the
detector resolution as is shown in Fig. 3 for ∆ = 3 GeV
and Fig. 4 for ∆ = 6 GeV. The imaginary part of the in-
terference term, Σ4, discriminates between A and H most
clearly.

2 The continuum γγ → tt amplitudes should have imaginary
parts of the order of αs in QCD perturbation theory
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Fig. 4. The observables Σ1 to Σ4 with the tt invariant mass
measurement resolution factor ∆ = 6 GeV. The thick solid
(dashed) curves show the predictions for the A (H) production.
The thin solid curves show the QED predictions with no Higgs
production

Summing up, we have made the following observation
in this subsection. The mtt dependence of the total produc-
tion cross section, Σ1 +Σ2, can in principle reveal the dif-
ference between A and H productions, as shown in Fig. 2.
However the distinctive signatures of the A productions,
the constructive interference below the resonance and the
pronounced destructive interference above the resonance
diminish as the mtt measurement resolution becomes worse
going to ∆ = 3 GeV (Fig. 3) and to ∆ = 6 GeV (Fig. 4).
It is only the tiny destructive interference effects above
the resonance in Fig. 4 which signal the production of A
rather than H. The situation slightly improves by observ-
ing the Σ2 component by selecting those events where the
produced top quarks are both left-handed. Here the dis-
tinctive signature of the negative interference below the
resonance for the H production may survive even for the
resolution of ∆ = 6 GeV in Fig. 4. The cross section for tLtL
production, however, is rather small as compared to the
dominant tRtR production, because of the (1 − β)/(1 + β)
suppression factor in the corresponding QED amplitude;
see Table 2. Further information is obtained by studying
the interference between the tRtR and the tLtL amplitudes
in the observables Σ3 and Σ4. The real part of the inter-
ference term, Σ3, shows that the A production enhances
Σ3 above the QED prediction near the peak of the total
cross section, Σ1 + Σ2, whereas the H production pre-
dicts a smaller Σ3 than the QED prediction around the
peak of the cross section. This feature seems to persist
even with faint tt mass resolution, in Fig. 3 for ∆ = 3 GeV
and Fig. 4 for ∆ = 6 GeV. Finally the imaginary part of
the interference term, Σ4, discriminates between A and
H most clearly. The A production predicts negative and
the H production predicts positive effects for Σ4 around
the production peak. We therefore propose to use the four

Table 3. The values of bA
γ and bH

γ . The loops of t, b, W ,
χ̃−

1 and χ̃−
2 give a large contribution to bH

γ and bA
γ under our

parameterization; mA = 400 GeV, tan β = 3, M2 = 500 GeV,
µ = −500 GeV and Mf̃ = 1 TeV. mH = 403.8 GeV for the
above parameters

bA
γ × 104 bH

γ × 104

total 14 + 12i 11 + 1.3i
t 15 + 12i 12 + 3.3i
b −0.19 + 0.15i 0.18 − 0.15i

W 0.0 −1.0 − 1.7i
χ̃−

1 −1.1 −1.2
χ̃−

2 0.51 1.0

observables Σ1 to Σ4 in determining the CP property of
the spin zero resonance in the γγ → tt channel.

In the above discussion, we studied four observables
separately. Once they are derived individually, we can ob-
tain arbitrary linear combinations of them. The most pow-
erful combinations for probing the CP parity of Higgs
bosons are Σ1 + Σ2 + Σ3 and Σ1 + Σ2 − Σ3. The former
combination receives a contribution only from the CP -odd
resonance, the latter one only from the CP -even resonance
when CP is conserved. It is therefore straightforward to
separate the CP -even and CP -odd resonances, even when
their masses are degenerate.

4.3 Effects of the γγφ phase on the observables

In this subsection, we study the arg(bφ
γ) dependence of the

four observables studied in the previous subsection. We
first re-parameterize the Jz = 0 amplitudes of (2.2) as
follows:

Mσσ
λλ = [Mt]

σσ
λλ (4.13)

+

(√
ŝ

mφ

)3

rφ · i

[
1 + exp

(
2i tan−1 s2 − m2

φ

mφΓφ

)]
,

where

rH = σβbH
γ dH

t mH/(2ΓH) and rA = λbA
γ dA

t mA/(2ΓA).

In this expression, the phase of the Breit–Wigner resonance
amplitude is shifted by the phase of the rφ factor which
is essentially the phase of the γγφ vertex factor bφ

γ if we
neglect the phase in the ttφ vertex dφ

t . It should also be
noted that

|rφ|2 =
32π2

3β
Br(φ → γγ)Br(φ → tt). (4.14)

In the above discussions, we draw the H production
curves by assuming not only mH = mA, ΓH = ΓA and
Br(H → γγ)Br(H → tt) = Br(A → γγ)Br(A → tt), but
also that the γγ → H amplitude is proportional to the
γγ → A amplitude as a complex number,

bH
γ = bA

γ

[
Γ (H → γγ)
Γ (A → γγ)

]1/2

. (4.15)
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Fig. 5a,b. The ŝ dependence of the γγ → tt amplitudes Mσσ
λλ at Θ = 0◦. The amplitudes with A production are shown in the

left figure, whereas those for H production are shown in the right. The cases of arg(bφ
γ) = 0 and π/4 are denoted by the solid

and dashed circles, respectively. The small arrows indicate the direction of increasing ŝ and the solid and open small circles on
the trajectories show the ŝ = m2

φ points. As ŝ grows the amplitudes make counterclockwise trajectories, and the magnitude of
the resonance amplitude hits its maximum at ŝ = m2

φ

We note here that the phase of the H → γγ amplitude,
arg(bH

γ ), and that of the A → γγ amplitude, arg(bA
γ ), de-

pend significantly in the model parameters. As an example,
we show in Table 3 the MSSM prediction for the real and
imaginary parts of bA

γ and bH
γ . Here, we calculate the A

and H masses and couplings for the MSSM parameters;
mA = 400 GeV, tanβ = 3, mf̃ = 1 TeV, M2 = 500 GeV,
µ = −500 GeV. We find that arg(bA

γ ) is much larger than
arg(bH

γ ) . The large imaginary part of bA
γ is a result of

the s-wave A → tt decay near the tt production thresh-
old. The imaginary part of bH

γ is suppressed by the p-wave
H → tt decay and also by the partial cancellation due to
the H → W+W− contribution. Therefore, in the frame-
work of the two Higgs doublet model without any new
particles which contribute to the vertex significantly, the
A boson has a relatively large phase and the H boson has
a tiny phase. Because the imaginary part of the φ → γγ
amplitude is a sum of the contribution from the φ decay
modes into charged particles whereas the real part receives
contribution from all the charged particles, we expect that
arg(bφ

γ) is a good probe of heavy charged particles.
Figure 5 shows plots of the amplitudes Mσσ

λλ on the
complex plane where the scattering angle Θ is fixed to zero
as a sample. The amplitudes with the A (H) production is
in the left (right) side. Since the tree amplitudes [Mt]

σσ
λλ are

real and almost constant around the resonance, the plots
draw a counterclockwise circle which have the beginning-
and end-points on the real axis as ŝ increases. The circles
which have the beginning-points nearer (further) from the
origin correspond to M−λ,−λ

λλ (Mλλ
λλ). Two cases of arg(bφ

γ)
are considered. One is the case where bφ

γ has no phase (solid
curves), the other is arg(bφ

γ) = π/4 (dashed curves). The
solid and open small circles on the trajectories indicate
the ŝ = m2

φ points. When m2
φ − ŝ � mφΓφ, the ampli-

tudes are real positive numbers that are determined by the
QED amplitudes of Table 1. As ŝ grows, the amplitudes
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Fig. 6. The observables Σ1 to Σ4 with no smearing by detector
resolution. The solid, dashed, dot dashed and dotted curves
are Σ1, Σ2, Σ3 and Σ4, respectively. The observables with A
production are in the left (right) figures whereas those with
the H production are shown in the right. The upper and lower
figures show the case of arg(rφ) = 0 and π/4, respectively

make counterclockwise trajectories, and the magnitude of
the resonance amplitude hits its maximum at ŝ = m2

φ.
At m2

φ − ŝ � mφΓφ, the amplitudes reduce to the real
and positive QED amplitude again. The trajectories do
not close because of the mild ŝ dependence of the QED
amplitudes.

The magnitudes of Mσσ
λλ have peaks at the furthest

points from the origin on the trajectories. The
√

ŝ values
at which the amplitudes have the largest magnitude are
almost similar between Mλλ

λλ and M−λ,−λ
λλ for the A pro-

duction (slightly below the ŝ = m2
A point), while they are
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significantly different for the H production because the
signs of the imaginary parts are opposite for M−λ,−λ

λλ and
Mλλ

λλ. The amplitude of Mλλ
λλ becomes maximum slightly

below the ŝ = m2
H point, but that of M−λ,−λ

λλ hits the
maximum at ŝ > m2

H .
When we compare the arg(bA

γ ) = 0 amplitudes (solid
circles) and the arg(bA

γ ) = π/4 amplitudes (dashed circles),
we notice that the magnitudes of all the amplitudes are
reduced for arg(bA

γ ) > 0 because the imaginary parts of
the resonant amplitudes are positive for arg(bA

γ ) = 0. It
is notable that at ŝ = m2

A (solid and open circles along
the trajectries), the real part of the M−λ,−λ

λλ amplitudes
become negative when arg(bA

γ ) = π/4. In the case of the
φ = H amplitudes shown in Fig. 5b, the most notable
feature is that the magnitudes of the M−λ,−λ

λλ amplitudes
increase for arg(bA

γ ) > 0 because the sign of the imaginary
part of the H resonant amplitude is negative for these
amplitudes. On the other hand, the magnitudes of the
Mλλ

λλ amplitudes decrease for arg(bA
γ ) > 0 as in the case

for the A production amplitudes.
We show in Fig. 6 the four observables Σ1 to Σ4 for

the A production on the left, and for the H production on
the right-hand side. The predictions for arg(bφ

γ) = 0 are
shown in the top figures, whereas those for arg(bφ

γ) = π/4
are shown in the bottom figures.

We find that the features which are sensitive to the
CP parity of the spinless boson φ, such as the interference
pattern of Σ3 and Σ4 near the resonances, remain stable
against varying of arg(bφ

γ) between 0 and π/4. On the other
hand the arg(bφ

γ) dependence of the four observables are
significant enough that the phase of the γγφ vertex func-
tion may be measured experimentally by a careful study
of all the observables.

5 Conclusions

We have studied the effects of heavy Higgs bosons in the
tt production process at a PLC. We have introduced ob-
servables which include a new type of interference by con-
sidering the angular correlation of decay products of top
quarks, and we found that they are useful for probing the
CP nature of the produced Higgs boson. It has also been
shown that variation in the complex phase of the γγφ ver-
tex modify the magnitudes of the observables and the

√
ŝ

values where the observables have peaks and bottoms.
Further studies on the cases where the Higgs sector has

CP non-conservation and/or a degenerate pair of heavy
neutral bosons will be reported elsewhere [15]. The present
study may motivate a careful study of the experimental
resolution of the tt invariant mass measurements as well
as a quantitative study of the accuracy of the resonance
parameters, mφ, Γφ, Br(φ → γγ)Br(φ → tt), arg(bφ

γdφ
t ),

and its CP parity.

Acknowledgements. The authors would like to thank T. Taka-
hashi and I. Watanabe for useful comments. The work of EA is

supported in part by the Grant-in-Aid for Scientific Research
from MEXT, Japan.

A Amplitude for the process
γγ → tt → bf1f2 bf3f4

We describe the helicity amplitudes for the process γγ →
tt → bf1f2 bf3f4 by

Mλ1λ2(Θ; θ, φ, θ, φ; θ∗, φ∗, θ
∗
, φ

∗
) (A.1)

=
∑

σ=L,R

∑
Λ=−,0

∑
Λ=0,+

Mσσ
λ1λ2

(Θ)

×DΛ
σ (θ, φ)D

Λ

σ (θ, φ)WΛ(θ∗, φ∗)WΛ(θ
∗
, φ

∗
),

in the zero-width limit of the top quark and the W bosons.
Here λ1, λ2 are the helicities of the colliding photons,
Mσσ

λ1λ2
(Θ) is the γ(λ1)γ(λ2) → t(σ)t(σ) scattering am-

plitudes at the scattering angle Θ in the γγ collision CM

frame, DΛ
σ and D

Λ

σ are the decay amplitudes for the pro-
cesses tσ → bW+

Λ and tσ → bW−
Λ

in the t and t rest frame,
respectively. WΛ and WΛ are the decay amplitudes for the
processes W+

Λ → f1f2 and W−
Λ

→ f3f4 in the decaying W

rest frames, in the massless fermion limit (mfi = 0). The
decay amplitudes have the following simple forms in the
phase connection of [13,20]:

D0
L =

√
BL

2π
sin

θ

2
, D−

L =

√
BT

2π
cos

θ

2
,

D0
R =

√
BL

2π
cos

θ

2
eiφ, D−

R = −
√

BT

2π
sin

θ

2
eiφ,

D
0
L = −

√
BL

2π
sin

θ

2
, D

+
L =

√
BT

2π
cos

θ

2
, (A.2)

D
0
R = −

√
BL

2π
cos

θ

2
e−iφ, D

+
R = −

√
BT

2π
sin

θ

2
e−iφ,

and

W0 =

√
3
8π

B12 sin θ∗, W− =

√
3
8π

B12
1 − cos θ∗

√
2

e−iφ∗
,

W 0 =

√
3
8π

B34 sin θ
∗
, W+ = −

√
3
8π

B34
1 − cos θ

∗
√

2
eiφ∗

.

Here the decay amplitudes are normalized by∫
|D−

σ |2d cos θdφ =
∫

|D+
σ |2d cos θdφ

= BT =
2m2

W

m2
t + 2m2

W

,∫
|D0

σ|2d cos θdφ =
∫

|D0
σ|2d cos θdφ
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= BL =
m2

t

m2
t + 2m2

W

(A.3)

and ∫
|WΛ|2d cos θ∗dφ∗ = B12, (A.4)∫
|WΛ|2d cos θ

∗
dφ

∗
= B34,

where B12 is the branching fraction of W+ → f1f2 decays,
and B34 is that of W− → f3f4. The angles θ and φ (θ
and φ) are, respectively, the polar and azimuthal angles
of W+ (W−) in the t (t) rest frame where the common
polar axis is chosen along the t momentum direction in
the γγ collision CM frame, and the azimuthal angles φ
and φ are measured from the γγ → tt scattering plane. θ∗
and φ∗ are, respectively, the polar and azimuthal angles
of f2 in the W+ → f1f2 decay rest frame, whereas θ

∗

and φ
∗

are those of f3 in the W− → f3f4 rest frame. We
choose the f2 and f3 momenta in the above decays so that
the angles are those of the charged leptons in the decays
W+ → νll

+ and W− → l−νl. The polar axes are chosen
along the W± momentum in the parent t or t rest frame,
while the azimuthal angles φ∗ and φ

∗
are measured from

the t → bW+ and t → bW− decay planes, respectively, in
the γγ collision CM frame.

The amplitudes (A.1) can now be expressed solely in
terms of the γγ → tt amplitudes Mσσ

λ1λ2
(Θ):

Mλ1λ2(Θ; θ, φ, θ, φ; θ∗, φ∗, θ
∗
, φ

∗
)/
(

3
16π2

√
B12B34

)

= MLL
λ1λ2

(Θ)
{

−BL sin
θ

2
sin

θ

2
sin θ∗ sin θ

∗
(A.5)

−
√
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e−iφ∗

−
√

BLBT sin
θ

2
cos

θ

2
sin θ∗ 1 − cos θ

∗
√

2
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θ
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∗
)

2

×e−i(φ∗−φ
∗)
}

+ MRR
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{
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+
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θ
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∗
)
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}

+ MLR
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{

−BL sin
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{

−BL cos
θ
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2
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}

.

The differential cross section of (3.8) is now expressed in
terms of the γγ → tt amplitudes Mσσ

λ1λ2
(Θ).

B Cross section for the process
γγ → tt → bW +bW −

By using the W+ and W− decay angular distributions of
(3.8) and Appendix A, one can project out the polarized
W+W− production cross sections. The cross section for the
process γ(λ1)γ(λ2) → tt → bW+(Λ)bW−(Λ) is expressed
by

dσ̂λ1λ2

d cos Θd cos θdφd cos θdφ

=
β

32πŝ

∑
Λ=0,−

∑
Λ=0,+

∣∣∣MΛΛ
λ1λ2

(Θ; θ, φ, θ, φ)
∣∣∣2 , (B.1)

where∣∣∣MΛΛ
λ1λ2

(Θ; θ, φ, θ, φ)
∣∣∣2 (B.2)

=
∣∣MRR
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∣∣2 ∣∣DΛ
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∣∣2 ∣∣∣∣DΛ

L

∣∣∣∣2 +
∣∣MLR

λ1λ2

∣∣2 ∣∣DΛ
L

∣∣2 ∣∣∣∣DΛ

R

∣∣∣∣2
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+ 2 Re
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.

It is helpful to write down the squared amplitudes in the
case where λ1 = λ2 = λ, because a high luminosity and a
high degree of λ1 = λ2 = λ polarization for energetic two
photon pairs can be achieved at a PLC by choosing a right
combination of the laser and the e− beam polarizations.
We find

|M00
λλ|2

=
{

|MRR
λλ |2 cos2

θ

2
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θ

2
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(1992); M. Kramer, J. Kühn, M.L. Stong, P.M. Zerwas,
Z. Phys. C 64, 21 (1994); J.F. Gunion, J.G. Kelly, Phys.
Lett. B 333, 110 (1994)

8. K. Hagiwara, Nucl. Instrum. Meth. A 472, 12 (2001)
9. E. Asakawa, J. Kamoshita, A. Sugamoto, I. Watanabe,

Eur. Phys. J. C 14, 335 (2000)
10. E. Asakawa, S.Y. Choi, K. Hagiwara, J.S. Lee, Phys. Rev.

D 62, 115005 (2000)
11. R.M. Godbole, S.D. Rindani, R.K. Singh, Phys. Rev. D

67, 095009 (2003)
12. P. Niezurawski, A.F. Zarnecki, M. Krawczyk, JHEP 0211,

034 (2002)
13. K. Hagiwara, D. Zeppenfeld, Nucl. Phys. B 274, 1 (1986)



364 E. Asakawa, K. Hagiwara: Probing the CP nature of the Higgs bosons by tt production

14. J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, Higgs
hunter’s guide (Addison-Wesley Publishing Company
1990), and references therein

15. E. Asakawa, K. Hagiwara, in preparation
16. K. Hagiwara, H. Murayama, I. Watanabe, Nucl. Phys. B

367, 257 (1991)
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